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Abstract—This paper gives an analysis of F-plane waveguide ferrite
limiters under subsidiary resonance conditions. Since Suhl’s high-power
damping term is power sensitive, it is necessary to evaluate it in every
part of the ferrite structure before forming the dispersion relation.
This is done in this paper by dividing the waveguide assembly in small
elements transverse and parallel to the direction of propagation and
calculating it in each region. The dispersion relation in each section along
the direction of propagation is then formed in conjunction with the
appropriate Suhl damping constant by establishing the transverse reson-
ance condition. The total output power is obtained by forming the input/
output relation for each section one at a time along the structure. The
theory has been found useful in describing both the onset of limiting and
the dynamic range of a ferrite limiter mounted on one of the narrow walls
of the waveguide.

INTRODUCTION

NUMBER OF different waveguide ferrite limiters

using E-plane structures under subsidiary resonance
conditions [1]-[3] have been described in the literature
[4]-[11]. All of these designs have relied on experiment
for their adjustment. This paper permits the analysis of
such limiters given the material parameters such as spinwave
linewidth and magnetization, and the dimensions of the
structure.

The complex propagation constant of such limiters is
obtained by forming the dispersion relation in conjunction
with Suhl’s high-power damping constant [2]. Since this
damping term is power sensitive, it is necessary to calculate
it in every part of the ferrite. This is done by dividing the
structure in elements transverse and 'parallel to the direction
of propagation, and evaluating the circular magnetic field
which establishes the subsidiary resonance in each region
as a preliminary to calculating Suhl’s damping term. The
critical circular magnetic field is calculated from the mag-
netic variables of the ferrite material in the classical way.
The dispersion relation of each section is then obtained
one at d time by forming its overall ABCD matrix and
applying the boundary conditions. The nonlinear attenua-
tion for the first section is used to obtain the input/output
relation for that section. The process is then repeated for
the next one until the power transmitted by the last section
gives the power transmitted by the device. Since all parts
of this geometry do not have the same power, the dynamic
range of such limiters is not limited to that of Suhl’s high-
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power susceptibility, but it also is a function of the volume
of the ferrite slab.

One arrangement considered in detail in this paper is that
of a ferrite slab mounted on one of the narrow walls of the
waveguide [4], [5]. The agreement between theory and
experiment for this construction, while not complete, does
appear to exhibit the general characteristics of this device.

The paper also includes some experimental work on a
centrally located composite garnet-dielectric configuration,
as well as on a laminar construction [10].

CoMPLEX PROPAGATION CONSTANT OF E-PLANE
WAVEGUIDE FERRITE LIMITER

The three important waveguide ferrite limiter configura-
tions discussed in this paper are depicted in Fig. 1(a)(c).
The complex propagation constants of such structures can
be obtained by evaluating their overall ABCD matrices and
applying the boundary conditions at the waveguide walls.
This is the standard approach to such problems and has
been described in [12]-[15]. The overall matrix is con-
structed in terms of the individual matrices appropriate to
each region, The three types of regions encountered in the
theory of ferrite limiters are air, dielectric, and ferrite or
garnet ones for which ABCD matrices are given in the
Appendix. The ferrite regions in the transverse plane are
further subdivided, and Suhl’s high-power damping is
introduced in each one of them. An additional geometry
for which analysis is also possible is illustrated in Fig. 2.
The overall ABCD matrix is obtained by matrix multiplica-
tion of the ABCD matrices of the individual regions in a
straightforward manner.

A B) _[A; B [A: B)][4s By] [4. B
C .D CI Dl C2 D'2 C3 D3 Cn Dn )
(1

The ABCD matrix relates the electric and magnetic fields at
the two waveguide walls

E.|l (4 B][E,
[Hyl] - [C D] [H.vn] ' (2)
Applying the boundary conditions E,; = E,, = 0 gives the
dispersion relation from which y is obtained. The result is
B =0.

Since the ferrite limiter is essentially a three-dimensional
problem, the ferrite structure is now divided into small
sections in the direction of propagation, and the dispersion
relation found for each one, with the input power obtained
by forming the input/output relation of the previous section.



HELSZAJN ¢! al.: FERRITE LIMITERS

FERRITE

omse
L //
o /

(a)

FERRITE

/ /
1

Ho /

(b)

ERRITE

/

\J
H, g

©

Fig. 1. (a) Schematic of composite garnet-dielectric limiter at center
of waveguide. (b) Schematic of composite garnet—dielectric limiter
mounted against narrow wall of waveguide. (c) Schematic of wave-
guide limiter using garnet slab against narrow wall of waveguide.

The schematic of the side mounted ferrite limiter is illus-
trated in Fig. 3.

ONSET OF NONLINEAR LIMITING UNDER PERPENDICULAR
PuMPING
The onset of limiting under perpendicular pumping at
the subsidiary resonance is described by the following
standard relation [2]:
Vol = AHJ(—o + 0,)? + o*]/?
et (Dm/CO(CO/2 + @o — Nzwm)
which gives the critical field for the circular polarization

which establishes the subsidiary resonance.
The preceding equation applies at

3

wy = 02 “4)
with 8, = 45° and k = 0. In the preceding equations,
oaw = yAH[2 ®)
02 = (Wp — N0y + ©0,/2)(wo — N, 0,,) (6)
o, = (0o — N,0,) )

and the other quantities have the usual meaning.
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Fig. 2. Schematic of laminar limiter.

Fig. 3. Schematic of waveguide limiter indicating partitioning of
device for computation purposes.

The value of the applied field H, at the subsidiary
resonance is obtained by combining the preceding equations

(©/2)* = (@ ~ Nywp + 0p/2)(@ — N,00).  (8)

Since only internal RF fields are used throughout this text,
the preceding quantities do not involve the transverse de-
magnetizing factors N, and N,. A knowledge of N, is also
not necessary to evaluate |4, |, but is only required to
calculate H, for experimental purposes.

STEADY-STATE SUSCEPTIBILITY UNDER CONDITIONS OF
SUBSIDIARY ABSORPTION

Below the onset of spinwave instability, the main effect
of increasing the driving power is an increase in the am-
plitude of the uniform mode, or equivalently, an increase in
the precession angle of the magnetization. Increasing the
driving power above the critical threshold results in the
transfer of power from the uniform mode to the spinwave
modes, and the uniform mode remains constant just below
its threshold value.

Therefore, above the critical threshold, the uniform mode
saturates at the threshold value [2]

wmzlh+|2

@ oy + ®

fm |2 =
Below the critical threshold, the usual relation between m
and h applies

2
W’ [h 412

(0 — 0) + 2o* (10)

lm+|(2: =
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Fig. 4. High-power susceptibility versus circular magnetic field for
pure YIG at 9.35 GHz.

Hencefor P > P,
2 _ P2 2 2
F=F[aw + (@ — 0)] - (v - o, (1)
where P/P, = h, %[h,.. The susceptibility above the

critical power P, at subsidiary resonance is given by

I3

X+
P/P,

xX+(P > P) = /T

N(@ = @)X (P[P, - 1) + o*0*P[P,
awP/P, ’

(12)

If the subsidiary absorption resonance lies well below the
main resonance, the imaginary part of the scalar suscep-
tibility becomes

X+H(P>Pc)~_1_,

X+ o

JP/P, — y

(CO - wr). P/_Pc

13)

This equation increases from zero (since we have neglected
the second term in the radicant) at P = P, to a maximum
(v — w,)/20c» at P = 2P,, that is, 3dB above critical
power, and then steadily declines to zero. This is illustrated
in Fig. 4. '

This behavior suggests that every part of the ferrite
should ideally operate under the condition P/P, = 2. How-
ever, Fig. 4 indicates that effective limiting will occur pro-
vided the relative power lies between 1 and 10 dB above the
critical power.

TENSOR PERMEABILITY AT HIGH POWER

One way the high-power circular susceptibility may be
introduced into the tensor permeability is by writing the
tensor elements 1 and K in terms of the circular suscep-
tibilities y, and y_. The result is

(14)
(13

by =p—K=1+ g,

p.=u+K=1+4y_.
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Combining the last two equations gives

p=1+ % ;L x+) (16)
_ G- = x4)
K = fe—te 17

where for P > P, the high-power damping term I’ is used
in x . instead of aw. The complex circular susceptibilities are
therefore given by

1+(P > P) =y (P> P) — ju"(P > P

W
-0 + (0, + jT)

(18)

14 COm

o + (0, + jow)

x-(P > P) = x." — jx- (19)

The preceding quantities may now be used in conjunction
with Maxwell’s equations to obtain the high-power charac-
teristic of the ferrite limiter.

The nonlinear Suhl’s damping terms for the first section
are

2
By 1

h2

| [?0? + (0 — 0,)*] = (0 — o,)?

2
I, = }%z— [®0® + (0 - 0)*] — (0 — »,)?

2
Ty = h_;l";_ [*0? + (@ — 0)?] — (0 — »)* (20)
(4

where Ay 4,7y 5, .y, are the circular fields in the m
elements of the first section with the total incident power
being P W. Forming the dispersion relation for the first

section now gives the power incident on the second section
as
P — AP, = Pe™%" @1
where
Y=o+ jp 22

and « and f§ are the real and imaginary parts of the complex
propagation constant y. For the second section one has

2
I, = ”7— [P0 + @ — )] — (@ — o)

h 2
T, = 722— [P0? + (0 — 0)] — (0 — »)?

2
Tym’ %-’;‘« [0?0? + (@ — )] — (@ — ®)* (23)

(4
where h, 1,05 3, b, , are the circular fields in the m

elements of the second section, with the total incident
power being P — AP;. The program is complete when

(P — AP, — AP, --) < P.. (24)
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Fig. 5. Flow chart of computer program.

COMPUTATION

A flow diagram of the computer program used to analyze
the E-plane ferrite limiters studied in this text is illustrated
in Fig. 5. It is a modification of that used by Gardiol to
permit the introduction of the nonlinear elements of the
tensor permeability. In the arrangement used here the
structure is divided into elements perpendicular and parallel
to the direction of propagation. The ferrite region is par-
titioned into ten elements perpendicular to the direction of
propagation and into 4-mm-long sections along the direc-
tion of propagation. The dispersion relation is formed
separately for each section in conjunction with the ap-
propriate high-power susceptibilities. The nonlinear sus-
ceptibility in each element is obtained by calculating the
circular magnetic field which establishes the subsidiary
resonance in each region. The output power of the limiter
is obtained by truncating (24).

The circular magnetic variable in these calculations is
defined as

_ b Ry

h, 7

(25)
while the critical circular magnetic field is given by (3). In
calculating the magnitude of the circular magnetic field in
each section, it is assumed that both the output power and
the attenuation coefficient of the previous section applies
to it. Since only the low-power attenuation coefficient is
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Fig. 6. First section attenuation constant for W, = 2.54 mm.
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Fig. 7. Theoretical limiting characteristic for ferrite slab mounted
against narrow wall of waveguide for W between 2 and 3.55 mm
for 35-mm-long limiter.

available for the first section, its use leads to inconsistencies
in that incorrect field patterns will be established in the first
few sections. To avoid this difficulty, a separate program
was written in which the computer cycles over the first
section until a constant value of attenuation is obtained.
Fig. 6 illustrates the variation of the attenuation coefficient
with the number of cycles for different input powers.

Fig. 7 indicates the characteristics of E-plane limiters
using garnet slabs mounted against the narrow wall of the
waveguide in terms of their dimensions at 9.35 GHz. The
garnet material used for these calculations is a pure YIG,
for which |/, |, is given 129 A/m at 9.35 GHz.
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Fig. 8. Theoretical characteristic for ferrite slab mounted against Fig. 11. Experimental limiter characteristic for garnet slab against
narrow wall for the different lengths for Wy = 2.54 mm. narrow wall of waveguide for 35-mm-long limiter for W, =
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Fig. 12. Experimental limiter characteristic for garnet slab mounted
against narrow wall of waveguide for 35-mme-long limiter for

Wy = 2.54 mm.
Fig. 9. TInput and output pulses of subsidiary resonance limiter, with
Py = 400 W and 7 = 0.65 us.
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Fig. 10. Experimental limiter characteristic for garnet slab against Fig. 13. Experimental limiter characteristics of garnet slab mounted
narrow wall of waveguide for 35-mm-long limiter with W, = against narrow wall of waveguide for 35-mm-long limiter at different
1.52 mm. . magnetic fields for W, = 3.05 mm.
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Fig. 14. Experimental limiter characteristic for a centrally located
1garne’c—dielectric limiter with W, + 3.05 mm for 35-mm-long
imiter.

Fig. 8 gives the characteristic of one configuration as a
function of the overall length of the device. It indicates
that the limiting range of the limiter is essentially a function
of its length. The fact that the flat region of some limiter
configurations is less than the threshold value may be
attributed to the real part of the circular susceptibility being
power sensitive as well as the imaginary component.

HiGH-POWER CHARACTERISTICS OF FERRITE LIMITERS

This section presents some experimental results obtained
on the limiter geometries depicted in Figs. 1(a) and (c) and
2. All the limiters described here use polycrystalline YIG
with AH, = 114 A/m" and a magnetization of M, =
0.1780 Wb/m?. The experimental arrangement employed a
calibrated bypass channel so that both the incident and
output signals of the limiter could be readily monitored.
Fig. 9 illustrates the output pulse which consists of the
characteristic initial spike region due to the finite time
required to initiate subsidiary resonance, followed by the
flat portion which applies in the limiting region. All mea-
surements were made using a tunable X-band magnetron
at a fixed frequency of 9.35 GHz. The peak power with a
pulsewidth of 1.0 us and a pulse-repetition frequency of
1000 Hz was varied 0-10 kW,

Figs. 10-12 depict limiting characteristics for the con-
figuration illustrated in Fig. 1(c) for W, = 1.5, 2.05, and
2.54 mm, It shows the influence of the garnet thickness on
the onset of limiting and the dynamic range for a limiter
35 mm long. Fig. 13 indicates the input/output relation for
the same arrangement with W, = 3.05 mm. The charac-
teristic for this limiter is not unique in that it is strongly
influenced by the direct magnetic field. Although the
limiting threshold achieved here is compatible with the
lowest threshold obtained, theoretically the small-signal
characteristic of this device exhibited large variation in its
insertion loss with frequency.

Fig. 14 depicts the input/output relations for the limiter
illustrated in Fig. 1(a). In this arrangement, the overall

L It is observed that the value for AH, used here applies to a parallel
pump arrangement while the experimenital geometry described in this
text 1s a perpendicular pump arrangement.
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width of the transverse assembly was kept constant at
3.05 mm while the garnet thickness W, was altered. The
main section of the limiter was 35 mm long with 18-mm-long
tapers at each end for matching purposes.

Fig. 15 illustrates the limiting characteristic of the
laminar construction in Fig. 2. The assembly used here
consisted of six garnet rods spaced by five alumina rods of
the same cross section, the cross section of the rods being
3.0 x 3.0 mm. The total length of this device was 33 mm
long, but its effective length was half this value since the
dielectric spacers do not contribute to the limiting. The
dynamic range for this device is by far the smallest of those
studied, which is consistent with the fact that its effective
length is the shortest. The insertion loss of the experimental
limiters was typically 4 dB in each instance,

CONCLUSION

This paper has described the analysis of E-plane wave-
guide ferrite limiters. The theory has been found useful in
investigating the onset of limiting and the dynamic range of
a ferrite slab limiter configuration., Such experimental
limiters have also been constructed and evaluated. One
feature of these limiters is that their limiting thresholds and
dynamic ranges appear to be a function of the garnet volume
rather than of their location in the waveguide. The analysis
applies, provided the ferrite loaded waveguide does not
propagate the TE,, mode.

APPENDIX
ABCD MATRICES OF STANDARD WAVEGUIDE REGIONS

The ABCD matrices for the three standard regions en-
countered in this paper are listed as follows. In the ferrite
region, the 4ABCD matrix is defined by

A = cos k0, + j ya (E) - sin k0,
: o A1

m

B = —JPHoke Gk s
. a2 E2
c= - fu_ (JZ_% - 1) Sin 0,
wﬂoﬂe km 1)
.y (KY .
D = cos k,6,, — j = |—} sin k0,
kn \n
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where
kn® = potoltet, +
MZ _ KZ
U

and §,, is the width of the ferrite region.

If the direction of the magnetic field is reversed, the sign
of K/u is changed in the preceding equations. In the air
region, the ABCD matrix is

A = cos ké

He =

B = —!'ﬁ’l? sin k&

C = —~J—k— sin k6
QLo
D = cos ké

where

K = o’eotio + ¥°
and § is the width of the air region, while for the dielectric
region it is .

A = cos k0,

B = %0 gin k.0,

d
C = ik, sin k.0,
Wit

D = cos k0,
where
ki = o®uotots + 7

and ¢, is the width of the dielectric region.
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